Propagation Model for Ground-to-Aircraft Communications in the Terahertz Band with Cloud Impairments

Author:

Doborshchuk Vladimir,Begishev VyacheslavORCID,Samouylov KonstantinORCID

Abstract

By operating over a large bandwidth, the terahertz (THz) frequency band (0.3–3 THz) promises to deliver extremely high data rates. While the use of this band in cellular communications systems is not expected to happen within the next decade, various other use-cases such as wireless backhauling and point-to-point wireless access are on the immediate horizon. In this study, we develop an analytical propagation model for the case of ground-to-aircraft communications by explicitly accounting for THz-specific propagation phenomena including path loss, attenuation by different types of clouds, and atmospheric absorption at different altitudes. To this aim, we first exhaustively characterize the geometric, molecular, and structural properties of clouds for different weather conditions and Earth regions. Then, by applying the tools of stochastic geometry, we present the closed-form expression for received power at the aircraft. Our numerical results show that the type of weather forming different compositions of clouds provides a major impact on the overall path losses and thus the attained data rates. Specifically, the difference between sunny and rainy conditions may reach 30–50 dB. The overall path loss also heavily depends on the region time and the difference may reach 10–30 dB. The worst conditions are logically provided by rain, where the additional attenuation on top of sunny conditions reaches 50 dB over the whole THz band. The Middle Earth zone is also the worst out of the considered regions with additional attenuation reaching 30 dB. The developed model can be used as a first-order approximation for ground-to-aircraft THz channel modeling.

Funder

Russian Science Foundation

RUDN University Strategic Academic Leadership Program

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Three-segment fiber transmission dispersion management method for femtosecond lasers in terahertz time-domain spectroscopy systems;Fourteenth International Conference on Information Optics and Photonics (CIOP 2023);2023-11-24

2. The application of terahertz technology in ultra high voltage large tonnage insulator detection;Energy Reports;2023-08

3. Overview of Techniques for Zero-Value Detection of Insulators;2023 the 7th International Conference on Energy and Environmental Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3