Research on an Off-Chip Microvalve for Pneumatic Control in Microfluidic Chips

Author:

Liu Xuling,Zuo Wensi,Song Huafeng,Shang Tingdong,Dong Haiwei,Wang Liangwen,Shao Jinggan,Li SongjingORCID

Abstract

A compact, rapid, and portable off-chip pneumatic control valve is significant for the miniaturization and integration of external pneumatic systems for microfluidic chips. In this work, an off-chip microvalve with a high-speed electromagnetic switch actuator and a polydimethylsiloxane (PDMS) material valve body has been designed to be easily encapsulated, simulated using MATLAB/Simulink software, and tested in a micromixer. Multi-physical coupling mathematical models are developed based on the elastic deformation force of the valve membrane, the driving force of the valve core, and the fluid force in the microchannel. Two single microvalves are used to form a three-way microvalve, which can control the air pressure in a pneumatic microchannel on the microfluidic chip. The relationship between the flow–duty cycle, the flow–pressure difference of the single electromagnetic microvalve, and the load pressure of the three-way microvalve is simulated and analyzed. Sample mixing performance controlled by the proposed off-chip three-way microvalve was tested to evaluate the pneumatic control capability, and the results show that the undertaking can fully satisfy the needs of a pneumatic microfluidic chip for most applications.

Funder

National Natural Science Foundation of China

Key Science and Technology Research Project of the Henan Province

Science and Technology Project of the Henan Provincial Department of Transportation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3