Abstract
A self-folding method that can fold a thick (~10 μm) metal layer with a large curvature (>1 mm−1) and is resistant to repetitive folding deformation is proposed. Given the successful usage of hinged origami/kirigami structures forms in deployable structures, they show strong potential for application in stretchable electronic devices. There are, however, two key difficulties in applying origami/kirigami methods to stretchable electronic devices. The first is that a thick metal layer used as the conductive layer of electronic devices is too hard for self-folding as it is. Secondly, a thick metal layer breaks on repetitive folding deformation at a large curvature. To overcome these difficulties, this paper proposes a self-folding method using hinges on a thick metal layer by applying a meander structure. Such a structure can be folded at a large curvature even by weak driving forces (such as those produced by self-folding) and has mechanical resistance to repetitive folding deformation due to the local torsional deformation of the meander structure. To verify the method, the large curvature self-folding of thick metal layers and their mechanical resistance to repetitive folding deformation is experimentally demonstrated. In addition, an origami/kirigami hybrid stretchable electronic device with light-emitting diodes (LEDs) is fabricated using a double-tiling structure called the perforated extruded Miura-ori.
Funder
Japan Society for the Promotion of Science
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献