Structural Design and Analysis of Hybrid Drive Multi-Degree-of-Freedom Motor

Author:

Li ZhengORCID,Zhao Hui,Chen Xuetong,Du Shenhui,Guo Xiaoqiang,Sun Hexu

Abstract

Piezoelectric-driven multi-degree-of-freedom motors can turn off self-lock, withstand high and low temperatures, are small in size and compact in structure, and can easily achieve miniaturization. However, they have a short life cycle and limited applications. In addition, high-intensity operation will result in a decrease in their stability. Electromagnetic-driven multi-degree-of-freedom motors, on the other hand, are simple and highly integrated, but they are large in volume and lack positioning accuracy. Therefore, combining the two drive modes can achieve complementary advantages, such as improving the motor’s torque, accuracy, and output performance. Firstly, the structure of the hybrid drive motor is introduced and its working principle is analyzed. The motor can achieve single and hybrid drive control, which is beneficial to improving the performance of the motor. Secondly, the influence of magnetization mode, permanent magnet thickness, slot torque, and stator mode on the motor is analyzed. Thirdly, the structure of the motor is determined to be 6 poles and 15 slots, the thickness of the permanent magnet is 12 mm, and the radial magnetization mode is used. Finally, the mixed torque and speed of the motor in the multi-degree-of-freedom direction are tested by experiments, which indirectly verifies the rationality of the structure design.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference24 articles.

1. Multi-degree-of-freedom spherical permanent magnet motors;Wang;Proceedings of the IEEE International Conference on Robotics & Automation,2001

2. Integrated design, modeling and analysis of a novel spherical motion generator driven by electromagnetic principle

3. A robot finger joint driven by hybrid multi-DOF piezoelectric ultrasonic motor

4. DESIGN AND DEVELOPMENT OF MULTI-DOF BALL-TYPE MICROMOTOR

5. Design of a hybrid piezoelectric-electromagnetic vibration power generator power generator;Lin;Proceedings of the IEEE International Conference on Nanotechnology,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3