Multi-Scale Structure and Directional Hydrophobicity of Titanium Alloy Surface Using Electrical Discharge

Author:

Wang Mengjie,Peng ZilongORCID,Li Chi,Zhang Junyuan,Wu Jinyin,Wang Fei,Li YinanORCID,Lan Hongbo

Abstract

Titanium alloys with special macro-micro composite structures of directional hydrophobicity are difficult to prepare due to poor thermal conductivity and good corrosion resistance, inhibiting the wide engineering applications for aerospace, marine engineering, and biomedicine. To prepare macro-micro composite structures on the surface of titanium alloys and achieve directional hydrophobicity, the sub-millimeter structures with an edge width of 150 μm, a groove width of 250 μm, and a depth of 250 μm were fabricated on the titanium alloy by wire electrical discharge machining (WEDM) technology, and high voltage-induced weak electric arc machining (HV-μEAM) was used to fabricate micro-scale feature size micro-structures on the processed macro-structure edges. The influence of process parameters on the morphology of microstructures was studied experimentally. The smooth surface of the titanium alloy is isotropically hydrophilic, and its contact angle is 68°. After processing the macrostructure on the titanium alloy surface, it shows directional hydrophobicity after being modified by low surface energy materials. The macro-micro composite structure formed by HV-μEAM realizes a directional hydrophobic surface with contact angles (CA) of 140° (parallel direction) and 130° (perpendicular direction), respectively. This surface has been modified with low surface energy to achieve contact angles of 154° and 143°. The results of the abrasion resistance test show that under the load of 100 g, it retains directional hydrophobicity at a friction distance of 700 mm with 600# sandpaper. The existence of the sub-millimeter macrostructure is the reason for the directionality of surface hydrophobicity. The microstructure can realize the transformation of the titanium alloy surface from hydrophilic to hydrophobic. Under the combined effects of the macro and micro composite structure, the surface of the titanium alloy shows obvious directional hydrophobicity.

Funder

National Natural Science Foundation of China

Major Project of Shandong Province Natural Science Foundation

Shandong Province Natural Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3