A Novel Image Processing Approach for Colloid Detection in Saturated Porous Media

Author:

Mirzaei Behzad1ORCID,Nezamabadi-pour Hossein1,Raoof Amir2,Nikpeyman Vahid2ORCID,de Vries Enno2,Derakhshani Reza23ORCID

Affiliation:

1. Intelligent Data Processing Laboratory (IDPL), Department of Electrical Engineering, Shahid Bahonar University of Kerman, Kerman 76169-13439, Iran

2. Department of Earth Sciences, Utrecht University, 3584 CB Utrecht, The Netherlands

3. Department of Geology, Shahid Bahonar University of Kerman, Kerman 76169-13439, Iran

Abstract

Over recent decades, natural and artificial colloids, as well as nanoparticles, have been increasingly used in various applications. Consequently, with this rising consumption, surface and subsurface environments are more exposed to these particles. The presence of these particles and the colloid-facilitated transport of microorganisms, the interactions between dissolved contaminants and mobile colloids in porous media, and the fate and transport of colloids through groundwater—one of the primary sources of water supply for human societies—have attracted extensive research. This study investigates the performance of several image processing methods in the field of colloid detection, which is a prerequisite for the subsequent steps in porous media research. We employed four different categories of image processing approaches on microscopy images—segmentation-based methods, background-detection-based methods, filter-based methods, and morphology-based methods—to conduct the detection process of colloids. Eight methods were applied and subsequently analyzed in terms of their drawbacks and advantages to determine the best ones in this domain. Finally, we proposed an ensemble approach that leverages the strengths of the three best methods using a majority vote to detect colloids more accurately. In experiments, Precision, Recall, F-measure, and TCR criteria were considered as evaluation tools. Experimental results demonstrate the high accuracy of image processing methods in recognizing colloids. Among all these methods, morphology-based methods were the most successful, achieving the best detection performance and improving the limited distinguishing features of small colloids. Moreover, our ensemble approach, achieving perfect scores across all evaluation criteria, highlights its superiority compared with other detection methods.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3