Doxorubicin Enhances Procoagulant Activity of Endothelial Cells after Exposure to Tumour Microparticles on Microfluidic Devices

Author:

Algarni Abdulrahman,Greenman JohnORCID,Madden LeighORCID

Abstract

The majority of cancer patients undergoing chemotherapy have a significantly increased risk of venous thromboembolism via a mechanism not yet fully elucidated but which most probably involves tumour microparticles (MP) combined with damaged/activated endothelium. Tumour cell lines (ES-2 and U87) were cultured as 3D spheroids and transferred to biochips connected through to a second chip precultured with an endothelial cell layer (human umbilical vein endothelial cells [HUVECs]). Media were introduced with and without doxorubicin (DOX) to the spheroids in parallel chips under constant flow conditions. Media samples collected pre- and post-flow through the biochip were analysed for tissue factor microparticles (TFMP) and procoagulant activity (PCA). HUVECs were also harvested and tested for PCA at a constant cell number. TFMP levels in media decreased after passing over HUVECs in both conditions over time and this was accompanied by a reduction in PCA (indicated by a slower coagulation time) of the media. The relationship between PCA and TFMP was correlated (r = −0.85) and consistent across experiments. Harvested HUVECs displayed increased PCA when exposed to tumour spheroid media containing TFMP, which was increased further after the addition of DOX, suggesting that the TFMP in the media had bound to HUVEC cell surfaces. The enhanced PCA of HUVECs associated with the DOX treatment was attributed to a loss of viability of these cells rather than additional MP binding. The data suggest that tumour MP interact with HUVECs through ligand-receptor binding. The model described is a robust and reproducible method to investigate cytotoxic agents on tumour spheroids and subsequent downstream interaction with endothelial cells.

Funder

Northern Borders University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3