Non-Destructive Imaging and Spectroscopic Techniques for Assessment of Carcass and Meat Quality in Sheep and Goats: A Review

Author:

Silva Severiano,Guedes Cristina,Rodrigues SandraORCID,Teixeira AlfredoORCID

Abstract

In the last decade, there has been a significant development in rapid, non-destructive and non-invasive techniques to evaluate carcass composition and meat quality of meat species. This article aims to review the recent technological advances of non-destructive and non-invasive techniques to provide objective data to evaluate carcass composition and quality traits of sheep and goat meat. We highlight imaging and spectroscopy techniques and practical aspects, such as accuracy, reliability, cost, portability, speed and ease of use. For the imaging techniques, recent improvements in the use of dual-energy X-ray absorptiometry, computed tomography and magnetic resonance imaging to assess sheep and goat carcass and meat quality will be addressed. Optical technologies are gaining importance for monitoring and evaluating the quality and safety of carcasses and meat and, among them, those that deserve more attention are visible and infrared reflectance spectroscopy, hyperspectral imagery and Raman spectroscopy. In this work, advances in research involving these techniques in their application to sheep and goats are presented and discussed. In recent years, there has been substantial investment and research in fast, non-destructive and easy-to-use technology to raise the standards of quality and food safety in all stages of sheep and goat meat production.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health(social science),Microbiology,Food Science

Reference127 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3