Deformation Monitoring Based on SBAS-InSAR and Leveling Measurement: A Case Study of the Jing-Mi Diversion Canal in China

Author:

Luo Pengjun12ORCID,Jin Xinxin2,Nie Ding2ORCID,Liu Youzhi2,Wei Yilun2

Affiliation:

1. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

2. China Institute of Water Resources and Hydropower Research, Beijing 100038, China

Abstract

The Jing-Mi Diversion Canal is a large-scale water diversion project in Beijing. Routine monitoring is crucial for the reliability and stability of urban water supply. Compared with traditional monitoring methods, interferometric synthetic aperture radar (InSAR) has the advantages of large scale and high accuracy. Based on the small baseline subset InSAR, 187 ascending and 102 descending SAR images obtained from Sentinel-1 were used to detect the deformation along the diversion canal from 2017 to 2023. The results show that there was a sinking trend along the diversion canal. The subsidence was serious in the first half of the canal, and continued to sink from 2019 to 2020. The subsidence was alleviated in 2023. Combined with leveling measurements, the InSAR deformation monitoring results of important pumping station buildings were verified. The measurement accuracy of InSAR can reach the millimeter level. We extracted the groundwater level time series and subsidence for risky canal segments. Through pixel-by-pixel comparison, it was found that fluctuations in groundwater level would have some impact on surface deformation. Severe local subsidence or uplift deformation occasionally occurred. To ensure the safety of water diversion, the monitoring and maintenance of relevant pump station buildings in risky areas should be increased in the future.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3