An Innovative EEG-Based Pain Identification and Quantification: A Pilot Study

Author:

Segning Colince Meli12ORCID,da Silva Rubens A.23ORCID,Ngomo Suzy2ORCID

Affiliation:

1. Department of Applied Sciences, UQAC (Université du Québec à Chicoutimi), Chicoutimi, QC G7H 2B1, Canada

2. Biomechanical and Neurophysiological Research Laboratory in Neuro-Musculoskeletal Rehabilitation (Lab BioNR), Department of Health Sciences, UQAC (Université du Québec à Chicoutimi), Chicoutimi, QC G7H 2B1, Canada

3. Centre Intégré de Santé et Services Sociaux du Saguenay-Lac-Saint-Jean (CIUSSS SLSJ), Specialized Geriatrics Rehabilitation Services at the La Baie Hospital, CIUSSS-SLSJ, Saguenay, QC G7H 7K9, Canada

Abstract

Objective: The present pilot study aimed to propose an innovative scale-independent measure based on electroencephalographic (EEG) signals for the identification and quantification of the magnitude of chronic pain. Methods: EEG data were collected from three groups of participants at rest: seven healthy participants with pain, 15 healthy participants submitted to thermal pain, and 66 participants living with chronic pain. Every 30 s, the pain intensity score felt by the participant was also recorded. Electrodes positioned in the contralateral motor region were of interest. After EEG preprocessing, a complex analytical signal was obtained using Hilbert transform, and the upper envelope of the EEG signal was extracted. The average coefficient of variation of the upper envelope of the signal was then calculated for the beta (13–30 Hz) band and proposed as a new EEG-based indicator, namely Piqβ, to identify and quantify pain. Main results: The main results are as follows: (1) A Piqβ threshold at 10%, that is, Piqβ ≥ 10%, indicates the presence of pain, and (2) the higher the Piqβ (%), the higher the extent of pain. Conclusions: This finding indicates that Piqβ can objectively identify and quantify pain in a population living with chronic pain. This new EEG-based indicator can be used for objective pain assessment based on the neurophysiological body response to pain. Significance: Objective pain assessment is a valuable decision-making aid and an important contribution to pain management and monitoring.

Funder

Fonds de Recherche du Québec-Nature et Technologies

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3