Design and Performance Assessment of a Small-Scale Ferrite-PM Flux Reversal Wind Generator

Author:

Manne BharathiORCID,Kiran Kumar Malligunta,B. Akuru UdochukwuORCID

Abstract

Currently, there is increasing research interest in harnessing wind energy for power generation by means of non-conventional electrical machines e.g., flux-reversal machines. The flux reversal machine is usually designed using scarce rare–earth permanent magnet material which may be unattractive in terms of machine cost. In this study, an attempt is made to re-design the flux reversal machine with non-rare-earth ferrite permanent magnet for wind energy applications. Because these machines possess high cogging torque, which results in vibration and noise, that are detrimental to the machine performance, especially at low speeds, a novel combined skewed and circumferential rotor pole pairing method is developed. The proposed cogging torque reduction method is implemented in 2-dimensional finite element analysis modeling and comparatively analyzed with other existing stand-alone methods viz., skewing, and rotor pole pairing. The results show that the proposed method led to 94.8% and 71% reduction in the cogging torque and torque ripple compared to the reference generator, respectively. However, the calculated torque density is reduced by 13%. Overall, the electromagnetic performance of the proposed ferrite PM machine exhibits desirable qualities as an alternative design for the direct drive wind generator.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference37 articles.

1. Renewables 2020 Global Status Report (Paris: REN21 Secretariat) http://www.ren21.net/gsr

2. Getting rare-earth magnets out of EV traction machines: A review of the many approaches being pursued to minimize or eliminate rare-earth magnets from future EV drive trains;Thomas;IEEE Electrif. Mag.,2017

3. 2D electromagnetic design of flux reversal generator for low speed wind applications using finite element analysis;Arshad;Int. J. Eng. Technol. Sci. Res.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3