SiC-Based Power Electronic Traction Transformer (PETT) for 3 kV DC Rail Traction

Author:

Adamowicz MarekORCID,Szewczyk Janusz

Abstract

The design of rolling stock plays a key role in the attractiveness of the rail transport. Train design must strictly meet the requirements of rail operators to ensure high quality and cost-effective services. Semiconductor power devices made from silicon carbide (SiC) have reached a level of technology enabling their widespread use in traction power converters. SiC transistors offering energy savings, quieter operation, improved reliability and reduced maintenance costs have become the choice for the next-generation railway power converters and are quickly replacing the IGBT technology which has been used for decades. The paper describes the design and development of a novel SiC-based DC power electronic traction transformer (PETT) intended for electric multiple units (EMUs) operated in 3 kV DC rail traction. The details related to the 0.5 MVA peak power medium voltage prototype, including the electrical design of the main building blocks are presented in the first part of the paper. The second part deals with the implementation of the developed SiC-based DC PETT into a regional train operating on a 3 kV DC traction system. The experimental results obtained during the testing are presented to demonstrate the performance of the developed 3 kV DC PETT prototype.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference40 articles.

1. Electrical Railway Transportation Systems;Brenna,2018

2. Comprehensive Topological Overview of Rolling Stock Architectures and Recent Trends in Electric Railway Traction Systems

3. Development of rolling stock inverters using SiC;Ishikawa;Hitachi Rev.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3