Optimization of a Wood Pellet Boiler System Combined with CO2HPs in a Cold Climate Area in Japan

Author:

Mori TaroORCID,Iwama Yusuke,Hayama HirofumiORCID,Mushtaha EmadORCID

Abstract

Hot water supply is one of the leading consumers of energy in the building sector in cold climate areas. The use of woody biomass is effective in reducing CO2 emissions in hot-water supply systems. This report deals with a system that combines a wood pellet boiler (PB) and a heat pump system with CO2 (CO2HP) that is used in a facility for disabled people. The following research was conducted. The operation of a hybrid system combining a PB and CO2HPs was investigated. While operating the system, four specific operations were developed as countermeasures to save on costs and reduce system troubles while reducing CO2 emissions. The processes and results are introduced. Numerical simulations were carried out to optimize the operation. The hot water temperature, water volume, and hot water loads were simulated. The influence of the water volume ratio on the cost and primary energy consumption under the requirements for safe system operation was studied. The regional economic ripple effects (REREs) of this system were studied. The wood pellet boiler is not only a measure for reducing primary energy consumption but can also play an important role in a regional economy for sustainable development in countries that import energy resources such as Japan.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3