Affiliation:
1. Department of Smart Wearables Engineering, Soongsil University, Seoul 06978, Republic of Korea
2. Department of Material Science and Engineering, Soongsil University, Seoul 06978, Republic of Korea
Abstract
Research on healthcare and body monitoring has increased in recent years, with respiratory data being one of the most important factors. Respiratory measurements can help prevent diseases and recognize movements. Therefore, in this study, we measured respiratory data using a capacitance-based sensor garment with conductive electrodes. To determine the most stable measurement frequency, we conducted experiments using a porous Eco-flex and selected 45 kHz as the most stable frequency. Next, we trained a 1D convolutional neural network (CNN) model, which is a type of deep learning model, to classify the respiratory data according to four movements (standing, walking, fast walking, and running) using one input. The final test accuracy for classification was >95%. Therefore, the sensor garment developed in this study can measure respiratory data for four movements and classify them using deep learning, making it a versatile wearable in the form of a textile. We expect that this method will advance in various healthcare fields.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献