Multi-Temporal Satellite Investigation of gas Flaring in Iraq and Iran: The DAFI Porting on Collection 2 Landsat 8/9 and Sentinel 2A/B

Author:

Faruolo Mariapia12ORCID,Genzano Nicola23ORCID,Marchese Francesco12ORCID,Pergola Nicola12ORCID

Affiliation:

1. Institute of Methodologies for Environmental Analysis, National Research Council, 85050 Tito Scalo, Italy

2. Satellite Application Centre (SAC), Space Technologies and Applications Centre (STAC), 85100 Potenza, Italy

3. School of Engineering, University of Basilicata, 85100 Potenza, Italy

Abstract

The synergic use of satellite data at moderate spatial resolution (i.e., 20–30 m) from the new Collection 2 (C2) Landsat-8/9 (L8/9) Operational Land Imager (OLI) and Sentinel-2 (S2) Multispectral Instrument (MSI) provides a new perspective in the remote sensing applications for gas flaring (GF) identification and monitoring, thanks to a significant improvement in the revisiting time (up to ~3 days). In this study, the daytime approach for gas flaring investigation (DAFI), recently developed for identifying, mapping and monitoring GF sites on a global scale using the L8 infrared radiances, has been ported on a virtual constellation (VC) (formed by C2 L8/9 + S2) to assess its capability in understanding the GF characteristics in the space-time domain. The findings achieved for the regions of Iraq and Iran, ranked at the second and third level among the top 10 gas flaring countries in 2022, demonstrate the reliability of the developed system, with improved levels of accuracy and sensitivity (+52%). As an outcome of this study, a more realistic picture of GF sites and their behavior is achieved. A new step aimed at quantifying the GFs radiative power (RP) has been added in the original DAFI configuration. The preliminary analysis of the daily OLI- and MSI-based RP, provided for all the sites by means of a modified RP formulation, revealed their good matching. An agreement of 90% and 70% between the annual RPs computed in Iraq and Iran and both their gas-flared volumes and carbon dioxide emissions were also recorded. Being that gas flaring is one of the main sources of greenhouse gases (GHG) worldwide, the RP products may concur to infer globally the GHGs GF emissions at finer spatial scales. For the presented achievements, DAFI can be seen as a powerful satellite tool able to automatically assess the gas flaring dimension on a global scale.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3