Magnolol Reduces Atopic Dermatitis-like Symptoms in BALB/c Mice

Author:

Lee Ju-Hyun1,Im Dong-Soon12ORCID

Affiliation:

1. Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea

2. Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea

Abstract

In traditional Korean medicines, Magnolia officinalis is commonly included for the remedy of atopic dermatitis, and magnolol is a major constituent of Magnolia officinalis. Its pharmacological effects include anti-inflammatory, hepatoprotective, and antioxidant effects. Using BALB/c mice repeatedly exposed to 1-chloro-2,4-dinitrobenzene (DNCB), magnolol was evaluated in atopic dermatitis-like lesions. Administration of magnolol (10 mg/kg, intraperitoneal injection) markedly relieved the skin lesion severity including cracking, edema, erythema, and excoriation, and significantly inhibited the increase in IgE levels in the peripheral blood. A DNCB-induced increase in mast cell accumulation in atopic dermatitis skin lesions was reversed by magnolol administration, as well as a rise in expression levels of pro-inflammatory Th2/Th17/Th1 cytokines’ (IL-4, IL-13, IL-17A, IFN-γ, IL-12A, TARC, IL-8, and IL-6) mRNAs in the lymph nodes and skin (n = 5 per group). In lymph nodes, magnolol reversed DNCB’s increase in CD4+RORγt+ Th17 cell fraction and decrease in CD4+FoxP3+ regulatory T cell fraction. The results also showed that magnolol suppressed T cell differentiation into Th17 and Th2 cells, but not Th1 cells. Magnolol suppresses atopic dermatitis-like responses in the lymph nodes and skin, suggesting that it may be feasible to use it as a treatment for atopic dermatitis through its suppression of Th2/Th17 differentiation.

Funder

Korean Ministry of Science, ICT, and Future Planning

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Antiallergic Metabolite Production from Plants via Biotechnological Approaches;Biotechnology of Medicinal Plants with Antiallergy Properties;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3