Deep Learning Super-Resolution Technique Based on Magnetic Resonance Imaging for Application of Image-Guided Diagnosis and Surgery of Trigeminal Neuralgia

Author:

Hwang Jun Ho1ORCID,Park Chang Kyu12,Kang Seok Bin3,Choi Man Kyu12,Lee Won Hee4ORCID

Affiliation:

1. Department of Neurosurgery, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea

2. Department of Neurosurgery, Kyung Hee University College of Medicine, Seoul 02447, Republic of Korea

3. Department of Urology, National Police Hospital, Seoul 05715, Republic of Korea

4. Department of Neurosurgery, School of Medicine, Inje University Busan Paik Hospital, 75 Bokji-ro, Busanjin-gu, Busan 47392, Republic of Korea

Abstract

This study aimed to implement a deep learning-based super-resolution (SR) technique that can assist in the diagnosis and surgery of trigeminal neuralgia (TN) using magnetic resonance imaging (MRI). Experimental methods applied SR to MRI data examined using five techniques, including T2-weighted imaging (T2WI), T1-weighted imaging (T1WI), contrast-enhancement T1WI (CE-T1WI), T2WI turbo spin–echo series volume isotropic turbo spin–echo acquisition (VISTA), and proton density (PD), in patients diagnosed with TN. The image quality was evaluated using the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). High-quality reconstructed MRI images were assessed using the Leksell coordinate system in gamma knife radiosurgery (GKRS). The results showed that the PSNR and SSIM values achieved by SR were higher than those obtained by image postprocessing techniques, and the coordinates of the images reconstructed in the gamma plan showed no differences from those of the original images. Consequently, SR demonstrated remarkable effects in improving the image quality without discrepancies in the coordinate system, confirming its potential as a useful tool for the diagnosis and surgery of TN.

Funder

Kyung Hee University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3