The GARD Prebiotic Reproduction Model Described in Order and Complexity

Author:

Mayer Christian1ORCID,Lancet Doron2ORCID,Markovitch Omer3ORCID

Affiliation:

1. Institute of Physical Chemistry, CENIDE, University of Duisburg-Essen, 45141 Essen, Germany

2. Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 7610001, Israel

3. Blue Marble Space Institute of Science, 600 1st Avenue, Seattle, WA 98104, USA

Abstract

Early steps in the origin of life were necessarily connected to the unlikely formation of self-reproducing structures from chaotic chemistry. Simulations of chemical kinetics based on the graded autocatalysis replication domain (GARD) model demonstrate the ability of a micellar system to become self-reproducing units away from equilibrium. Even though they may be very rare in the initial state of the system, the property of their endogenous mutually catalytic networks being dynamic attractors greatly enhanced reproduction propensity, revealing their potential for selection and Darwinian evolution processes. In parallel, order and complexity have been shown to be crucial parameters in successful evolution. Here, we probe these parameters in the dynamics of GARD-governed entities in an attempt to identify characteristic mechanisms of their development in non-covalent molecular assemblies. Using a virtual random walk perspective, a value for consecutive order is defined based on statistical thermodynamics. The complexity, on the other hand, is determined by the size of a minimal algorithm fully describing the statistical properties of the random walk. By referring to a previously published diagonal line in an order/complexity diagram that represents the progression of evolution, it is shown that the GARD model has the potential to advance in this direction. These results can serve as a solid foundation for identifying general criteria for future analyses of evolving systems.

Publisher

MDPI AG

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3