Draft Genome Sequence Analyses of Two Novel Marinobacter suadae sp. nov. and Wenyingzhuangia gilva sp. nov. Isolated from the Root of Suaeda japonica Makino

Author:

Park Sunho1,Kim Inhyup1ORCID,Chhetri Geeta1ORCID,Jung Yonghee1,Woo Haejin1,Seo Taegun1

Affiliation:

1. Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea

Abstract

Gram-negative, rod-shaped, and aerobic bacteria designated chi1T and chi5T were isolated from the root of Suaeda japonica Makino. Phylogenetics utilizing 16S rRNA and whole-genome sequences of the two novel strains chi1T and chi5T confirmed that they were related to the genera Marinobacter and Wenyingzhuangia, respectively. For the novel strains chi1T and chi5T, the digital DNA–DNA hybridization values (19–20% and 22.1–36.6%, respectively) and average nucleotide identity values (74.4–76.5% and 79.1–88.9%, respectively) fell within the range for the genera Marinobacter and Wenyingzhuangia, respectively. Pangenome analyses of the novel strains chi1T and chi5T revealed 357 and 368 singletons genes, respectively. The genomic DNA G + C contents of the strains chi1T and chi5T were 57.2% and 31.5%, respectively. The major fatty acids of strain chi1T were C12:0, C16:0, and summed feature 3 (C16:1 ω6c and/or C16:1ω7c), while those of the strain chi5T were iso-C15:0 3OH, iso-C17:0 3OH, and iso-C15:0. Data from the phylogenetic, phylogenomic, pangenome, genomic, physiological, and biochemical analyses indicated that the novel strains were distinct. Therefore, we propose the names Marinobacter suadae (type strain chi1T = KACC 23259T = TBRC 17652T) and Wenyingzhangia gilva (type strain chi5T = KACC 23262T = TBRC 17900T) for the studied bacterial strains.

Funder

National Institute of Biological Resources

Korea government

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Validation List no. 218. Valid publication of new names and new combinations effectively published outside the IJSEM;International Journal of Systematic and Evolutionary Microbiology;2024-07-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3