Abstract
ICT-based solutions are seen to be almost totally environmentally friendly, but game-based solutions for energy saving have not been explored yet. This paper describes a comprehensive analysis and an in-depth interpretation of the life cycle environmental impact of a game-based solution for domestic energy saving, developed and validated within the EU-funded Horizon 2020 project EnerGAware—Energy Game for Awareness of energy efficiency in social housing communities. Life cycle impacts were calculated with SimaPRO 8.5.2.0 using the ReCiPe 2016 v1.02 midpoint and endpoint methods and information contained within the Ecoinvent v3.4 database. Although the pre-competitive solution, directly arising from the research project, was found to have a relatively high environmental impact, its future exploitation, which mostly relies on existing infrastructure, was found to be highly competitive from an environmental perspective. The game will help reduce the life cycle impact of domestic energy consumption on damage to human health (3.68%), ecosystem quality (3.87%), and resource availability (4.81%). Most of the environmental impact of the market solution was found in the manufacturing phase (77.96–80.12%). Transport (8.86–7.57%), use (3.86–5.82%), and maintenance (7.24–7.54%) phases were found to contribute little to environmental impact. This research provides a useful reference for decision-making as it contributes to the environmental benchmarking of competing energy-saving strategies.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献