Abstract
Oxidation of pyrite in the coal gangue dumps usually results in acidification and spontaneous combustion, causing many environmental problems such as air, soil, and water pollution. The oxidizing bacteria exacerbate problems such as acidification, spontaneous combustion, and explosions. The bacterium Acidithiobacillus ferrooxidans was first separated and isolated from coal gangue samples. Bactericides such as Triclosan, Kathon (isothiazolinones), and sodium dodecyl sulfate (SDS) were selected for our study. Our findings indicated that the addition of bactericide effectively inhibited the oxidation of Fe2+, preventing pH decreases and oxidation-reduction potential increases. We also investigated the bactericidal mechanisms employed by the three bactericides against A. ferrooxidans by conducting a protein flocculation test, scanning electron microscopy, and time-of-flight mass spectrometry. We found that the specific inhibitory activities of the three bactericides differed. Kathon treatment caused A. ferrooxidans to release small amounts of proteins and lipids. A. ferrooxidans treated with Triclosan released small amounts of lipids and large amounts of plasmas. SDS caused the bacteria to release a large amount of proteins and lipids and degraded the surface structure of the cells, resulting in altered cell morphology.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献