Investigating the Role of Extreme Synoptic Patterns and Complex Topography During Two Heavy Rainfall Events in Crete in February 2019

Author:

Lagouvardos Konstantinos,Dafis StavrosORCID,Giannaros ChristosORCID,Karagiannidis Athanassios,Kotroni Vassiliki

Abstract

During February 2019, two severe storms affected the island of Crete, located in south Greece. Both storms produced excessive rainfall, provoking severe damages, especially in the western part of Crete. The role of the prevailing synoptic patterns and the interaction of the flow with the high mountains of Crete were investigated. For this purpose, a variety of observational and numerical model data were exploited, including data from a dense rain gauge network, satellite imagery, and model analysis of various parameters describing the stability of the impinging flow. The first storm was a long-lasting event, with convective outbreaks embedded in a more stratiform rainfall pattern. The second storm was brief but mostly convection dominated. The analysis of the available data underlined the role of the low-level convergence upstream of the mountains during both storms, highlighting similarities and differences, as well as the role of the stability of the impinging flow. High soil moisture content was also evidenced as a key ingredient for the severe flooding that occurred during the second storm. This work complements similar studies on the role of Mediterranean islands and their topography on the spatial and temporal distribution of extreme rainfall.

Publisher

MDPI AG

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3