Range Extension via Electrothermal Recuperation

Author:

Steinstraeter Matthias,Lewke Marcel,Buberger Johannes,Hentrich Tobias,Lienkamp Markus

Abstract

One of the decisive reasons for the slow market penetration of electric vehicles is their short driving range, especially in cold temperatures. The goal of this paper was to increase the driving range in cold temperatures. Electric vehicles recover kinetic energy by recuperation and storage in the battery. However, if the battery is fully charged or cold, the option of recuperation is severely limited. Braking energy is dissipated into the environment via the mechanical brake, and the range thus decreases. Electrothermal recuperation (ETR) enables the braking power to be used in heater systems and thus saves energy in the overall system. In this paper, ETR was investigated with a highly responsive serial layer heater. An overall model consisting of the electric powertrain, the heating circuit, and the vehicle interior was developed and validated. The limitations of recuperation capability were determined from driving tests. The factors state of charge and battery temperature were varied in the conducted simulations in order to quantify the range increase through ETR. The results showed that the range could be increased via electrothermal recuperation by up to 8% at −10 °C in a real driving cycle, using a serial heater. A control strategy of the heating circuit enabled the coolant circuit to function as buffer storage. The interior temperature—and consequently user comfort—remained unchanged.

Publisher

MDPI AG

Subject

Automotive Engineering

Reference36 articles.

1. Fear and loathing of electric vehicles: The reactionary rhetoric of range anxiety

2. Attitude of European Car Drivers Towards Electric Vehicles: A Survey;Pasaoglu,2012

3. Impact of Heating System on the Range of an Electric Vehicle

4. Winter Happens: The Effect of Ambient Temperature on the Travel Range of Electric Vehicles

5. Impact of Temperature on the A123 Li-Ion Battery Performance and Hybrid Electric Vehicle Range;Samdani,2013

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3