Investigation of Water Distribution and Mobility Dynamics in Recalcitrant Quercus acutissima Seeds during Desiccation Using Magnetic Resonance Methods

Author:

Chen Haiyan1ORCID,Shen Yongbao1

Affiliation:

1. Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China

Abstract

Recalcitrant seed vigor is closely related to seed moisture, so how do the water distribution and status change during seed drying? In this study, we investigated the association between water content (WC) and germination of Quercus acutissima seeds and used nuclear magnetic resonance (NMR) to monitor the water dynamics during seed drying. Results showed that freshly dispersed seeds had 38.8% WC, but drying to 14.8% WC resulted in a complete loss of vigor. Magnetic resonance images (MRI) reveal that the embryonic axis had the highest WC and the fastest rate of water loss, and seeds lost water from the embryonic axis to the apex and from the center to the end of cotyledons during desiccation. According to low-field NMR results, the proportion of free water in fresh seeds was the highest at 55%, followed by bound water at 10% and immobile water at 35%. During drying, the bound water and free water of seeds were lost simultaneously, and free water was lost most when the seeds died. Our results revealed that Q. acutissima seeds are highly sensitive to desiccation and that the water loss sites of the seeds were at the micropyle and scar. During desiccation, the bound water could not be retained, and the water balance in the seeds was broken, eventually leading to seed death.

Funder

The Subject of Key R & D Plan of Innovation and Popularization of Forestry Technology in Jiangsu Province Project

Major Scientific and Technological Innovation Project

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3