Clustering Arid Rangelands Based on NDVI Annual Patterns and Their Persistence

Author:

Sanz ErnestoORCID,Sotoca Juan José Martín,Saa-Requejo AntonioORCID,Díaz-Ambrona Carlos H.ORCID,Ruiz-Ramos Margarita,Rodríguez AlfredoORCID,Tarquis Ana M.ORCID

Abstract

Rangeland ecosystems comprise more than a third of the global land surface, sustaining essential ecosystem services and livelihoods. In Spain, Southeast Spain includes some of the driest regions; accordingly, rangelands from Murcia and Almeria provinces were selected for this study. We used time series metrics and the Hurst Exponent from rescale range and detrended fluctuation analysis to cluster different rangeland dynamics to classify temporally and spatially diverse rangelands. The metrics were only calculated for three time periods that showed significant NDVI changes: March to April, April to July, and September to December. Detrended fluctuation analysis was not previously employed to cluster vegetation. This study used it to improve rangeland classification. K-means and unsupervised random forest were used to cluster the pixels using time series metrics and Hurst exponents. The best clustering results were obtained when unsupervised random forest was used with the Hurst exponent calculated with detrended fluctuation analysis. We used the Silhouette Index to evaluate the clustering results and a spatial comparison with topographical data. Our results show that adding the Hurst exponent, calculated with detrended fluctuation analysis, provided a better classification when clustering NDVI time series, while classifications without the Hurst exponent or with the Hurst exponent calculated with the rescale range method showed lower silhouette values. Overall, this shows the importance of using detrending when calculating the Hurst exponent on vegetation time series, and its usefulness in studying rangeland dynamics for management and research.

Funder

Horizon 2020

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3