Assessing the Impact of Neighborhood Size on Temporal Convolutional Networks for Modeling Land Cover Change

Author:

van Duynhoven Alysha,Dragićević SuzanaORCID

Abstract

Land cover change (LCC) studies are increasingly using deep learning (DL) modeling techniques. Past studies have leveraged temporal or spatiotemporal sequences of historical LC data to forecast changes with DL models. However, these studies do not adequately assess the association between neighborhood size and DL model capability to forecast LCCs, where neighborhood size refers to the spatial extent captured by each data sample. The objectives of this research study were to: (1) evaluate the effect of neighborhood size on the capacity of DL models to forecast LCCs, specifically Temporal Convolutional Networks (TCN) and Convolutional Neural Networks (CNN-TCN), and (2) assess the effect of auxiliary spatial variables on model capacity to forecast LCCs. First, each model type and neighborhood setting configuration was assessed using data derived from multitemporal MODIS LC for the Regional District of Bulkley-Nechako, Canada, comparing subareas exhibiting different amounts of LCCs with trends obtained for the full region. Next, outcomes were compared with three other study regions. The modeling results were evaluated with three-map comparison measures, where the real-world LC for the next timestep, the real-world LC for the previous timestep, and the forecasted LC for the next year were used to calculate correctly transitioned areas. Across all regions explored, it was observed that increasing neighborhood sizes improved the DL model’s capabilities to forecast short-term LCCs. CNN–TCN models forecasted the most correct LCCs for several regions while reducing error due to quantity when provided additional spatial variables. This study contributes to the systematic exploration of neighborhood sizes on selected spatiotemporal DL techniques for geographic applications.

Funder

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3