Evaluation of IMERG Precipitation Products in the Southeast Costal Urban Region of China

Author:

Lu NingORCID

Abstract

The intensification of extreme precipitation has aggravated urban flood disasters, which makes timely and reliable precipitation information urgently needed. As the high-quality and widely used satellite precipitation products, Integrated Multi-satellitE Retrievals for GPM (IMERG), have not been well investigated in coastal urban agglomerations where damages from precipitation-related disasters are more severe. With precipitation measurements from local high-density gauge stations, this study evaluates three IMERG runs (IMERG ER, IMERG LR, and IMERG FR) in the southeast coastal urban region of China. The evaluation shows that the three IMERG products severely overestimate weak precipitation and underestimate heavy precipitation. Among the three runs, the post-corrected IMERG FR does not show a substantial improvement compared to the near-real-time IMERG ER and IMERG LR. The performance of IMERG varies depending on the precipitation pattern and intensity, with the best estimation ability occurring in the coastal urban region in summer and in the northern forests in winter. Due to the year-round urban effect on precipitation variability, IMERG cannot detect precipitation events well in the central high-density urban areas, and has its best detection ability on cultivated lands in summer and forests in winter. Within the urban agglomeration, IMERG shows a poorer performance in areas with higher urbanization levels. Thus, the IMERG products for coastal urban areas need considerable improvements, such as regionalized segmental corrections based on precipitation intensity and the adjustment of short-duration estimates by daily or sub-daily precipitation measurements.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3