A New Data Processing System for Generating Sea Ice Surface Roughness Products from the Multi-Angle Imaging SpectroRadiometer (MISR) Imagery

Author:

Mosadegh Ehsan,Nolin Anne W.ORCID

Abstract

Sea ice roughness can serve as a proxy for other sea ice characteristics such as ice thickness and ice age. Arctic-wide maps that represent spatial patterns of sea ice roughness can be used to better characterize spatial patterns of ice convergence and divergence processes. Sea ice surface roughness can also control and quantify turbulent exchange between sea ice surface and atmosphere and therefore influence surface energy balance at the basin scale. We have developed a data processing system that produces georeferenced sea ice roughness rasters that can be mosaicked to produce Arctic-wide maps of sea ice roughness. This approach starts with Top-of-Atmosphere radiance data from the Multi-angle Imaging SpectroRadiometer (MISR). We used red-band angular data from three MISR cameras (Ca, Cf, An). We created a training data set in which MISR pixels were matched with co-located and concurrent lidar-derived roughness measurements from the Airborne Topographic Mapper (ATM). We used a K-nearest neighbor algorithm with the training data to calibrate the multi-angle data to values of surface roughness and then applied the algorithm to Arctic-wide MISR data for two 16-day periods in April (spring) and July (summer). After georeferencing the roughness rasters, we then mosaicked each 16-day roughness dataset to produce Arctic-wide maps of sea ice roughness for spring and summer. Assessment of the results shows good agreement with independent ATM roughness data, not used in model development. A preliminary exploration of spatial and seasonal changes in sea ice roughness for two locations shows the ability to characterize the roughness of different ice types and the results align with previous studies. This processing system and its data products can help the sea ice research community to gain insights into the seasonal and interannual changes in sea ice roughness over the Arctic.

Funder

Jet Propulsion Lab

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3