Application of Random Forest Algorithm on Tornado Detection

Author:

Zeng QiangyuORCID,Qing ZhipengORCID,Zhu Ming,Zhang Fugui,Wang HaoORCID,Liu YinORCID,Shi Zhao,Yu Qiu

Abstract

Tornadoes are highly destructive small-scale extreme weather processes in the troposphere. The weather radar is one of the most effective remote sensing devices for the monitoring and early warning of tornadoes. The existing tornado detection algorithms based on radar data are unsupervised and have strict multi-altitude constraints, such as the tornado detection algorithm based on tornado vortex signatures (TDA-TVS), which may lead to high false alarm rates, and the performance of the detection algorithm is greatly affected by the radar data quality control algorithm. A novel TDA-RF algorithm based on the random forest (RF) classification algorithm is proposed for real-time tornado identification of the S-band China new generation of Doppler weather radar (CINRAD-SA). The TDA-RF algorithm uses velocity features to identify tornadoes and adds features related to reflectivity and velocity spectrum width in radar level-II data. Historical CINRAD-SA tornado data from 2006–2015 are used to construct the tornado dataset and train the TDA-RF model. The performance of TDA-RF is evaluated using CINRAD-SA data from five tornadoes of 2016–2020 with enhanced Fujita(EF) scale ratings ranging from EF0 to EF4 and distances from 10 to 130 km to the radar. TDA-RF performs well overall with the probability of detection (POD), false alarm ratio (FAR), and critical success index (CSI) of 71%, 29%, and 55%, respectively. Moreover, the TDA-RF improves POD and CSI, and reduces FAR compared to the TDA-TVS. The maximum tornado early-warning time of TDA-RF is 17 min, and the average is 6 min; TDA-RF can provide classification probability according to the tornado generation and development process to facilitate tracking ability.

Funder

the National Natural Science Foundation of China

the National Key R&D Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference61 articles.

1. Explaining the trends and variability in the United States tornado records using climate teleconnections and shifts in observational practices;Nouri;Sci. Rep.,2021

2. What is a tornado outbreak?: Perspectives through time;Ćwik;Bull. Am. Meteorol. Soc.,2021

3. McCarthy, D., Schaefer, J., and Edwards, R. What are we doing with (or to) the F-Scale. Proceedings of the 23rd Conference of Severe Local Storms, Volume 5.

4. On the implementation of the enhanced Fujita scale in the USA;Doswell;Atmos. Res.,2009

5. Statistical and empirical relationships between tornado intensity and both topography and land cover using rapid-scan radar observations and a GIS;Houser;Mon. Weather. Rev.,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3