Assessing Spatiotemporal Changes of SDG Indicators at the Neighborhood Level in Guilin, China: A Geospatial Big Data Approach

Author:

Han Liying,Lu LinlinORCID,Lu Junyu,Liu Xintong,Zhang ShuangchengORCID,Luo Ke,He Dan,Wang Penglong,Guo Huadong,Li QingtingORCID

Abstract

Due to the challenges in data acquisition, especially for developing countries and at local levels, spatiotemporal evaluation for SDG11 indicators was still lacking. The availability of big data and earth observation technology can play an important role to facilitate the monitoring of urban sustainable development. Taking Guilin, a sustainable development agenda innovation demonstration area in China as a case study, we developed an assessment framework for SDG indicators 11.2.1, 11.3.1, and 11.7.1 at the neighborhood level using high-resolution (HR) satellite images, gridded population data, and other geospatial big data (e.g., road network and point of interest data). The findings showed that the proportion of the population with convenient access to public transport in the functional urban area gradually improved from 42% in 2013 to 52% in 2020. The increase in built-up land was much faster than the increase in population. The areal proportion of public open space decreased from 56% in 2013 to 24% in 2020, and the proportion of the population within the 400 m service areas of open public space decreased from 73% to 59%. The township-level results indicated that low-density land sprawling should be strictly managed, and open space and transportation facilities should be improved in the three fast-growing towns, Lingui, Lingchuan, and Dingjiang. The evaluation results of this study confirmed the applicability of SDG11 indicators to neighborhood-level assessment and local urban governance and planning practices. The evaluation framework of the SDG11 indicators based on HR satellite images and geospatial big data showed great promise to apply to other cities for targeted planning and assessment.

Funder

Director Fund of the International Research Center of Big Data for Sustainable Development Goals

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3