Multidirectional Shift Rasterization (MDSR) Algorithm for Effective Identification of Ground in Dense Point Clouds

Author:

Štroner MartinORCID,Urban Rudolf,Línková LenkaORCID

Abstract

With the ever-increasing popularity of unmanned aerial vehicles and other platforms providing dense point clouds, filters for the identification of ground points in such dense clouds are needed. Many filters have been proposed and are widely used, usually based on the determination of an original surface approximation and subsequent identification of points within a predefined distance from such surface. We presented a new filter, the multidirectional shift rasterization (MDSR) algorithm, which is based on a different principle, i.e., on the identification of just the lowest points in individual grid cells, shifting the grid along both the planar axis and subsequent tilting of the entire grid. The principle was presented in detail and both visually and numerically compared with other commonly used ground filters (PMF, SMRF, CSF, and ATIN) on three sites with different ruggedness and vegetation density. Visually, the MDSR filter showed the smoothest and thinnest ground profiles, with the ATIN the only filter comparably performing. The same was confirmed when comparing the ground filtered by other filters with the MDSR-based surface. The goodness of fit with the original cloud is demonstrated by the root mean square deviations (RMSDs) of the points from the original cloud found below the MDSR-generated surface (ranging, depending on the site, between 0.6 and 2.5 cm). In conclusion, this paper introduced a newly developed MDSR filter that outstandingly performed at all sites, identifying the ground points with great accuracy while filtering out the maximum of vegetation and above-ground points and outperforming the aforementioned widely used filters. The filter dilutes the cloud somewhat; in such dense point clouds, however, this can be perceived as a benefit rather than as a disadvantage.

Funder

Technology Agency of the Czech Republic

Grant Agency of CTU in Prague

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3