Sulforaphane Combined with Vitamin D Induces Cytotoxicity Mediated by Oxidative Stress, DNA Damage, Autophagy, and JNK/MAPK Pathway Modulation in Human Prostate Tumor Cells

Author:

Tuttis Katiuska1ORCID,Machado Ana Rita Thomazela2ORCID,Santos Patrick Wellington da Silva2ORCID,Antunes Lusânia Maria Greggi2ORCID

Affiliation:

1. Department of Genetics, Ribeirão Preto School of Medicine, University of São Paulo—USP, Ribeirão Preto 14049-900, SP, Brazil

2. Department of Clinical Analysis, Toxicology, and Food Sciences, Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo—USP, Ribeirão Preto 14040-903, SP, Brazil

Abstract

Prostate cancer ranks second in incidence worldwide. To date, there are no available therapies to effectively treat advanced and metastatic prostate cancer. Sulforaphane and vitamin D alone are promising anticancer agents in vitro and in vivo, but their low bioavailability has limited their effects in clinical trials. The present study examined whether sulforaphane combined with vitamin D at clinically relevant concentrations improved the cytotoxicity of the compounds alone towards DU145 and PC-3 human prostate tumor cells. To assess the anticancer activity of this combination, we analyzed cell viability (MTT assay), oxidative stress (CM-H2DCFDA), autophagy (fluorescence), DNA damage (comet assay), and protein expression (Western blot). The sulforaphane–vitamin D combination (i) decreased cell viability, induced oxidative stress, DNA damage, and autophagy, upregulated BAX, CASP8, CASP3, JNK, and NRF2 expression, and downregulated BCL2 expression in DU145 cells; and (ii) decreased cell viability, increased autophagy and oxidative stress, upregulated BAX and NRF2 expression, and downregulated JNK, CASP8, and BCL2 expression in PC-3 cells. Therefore, sulforaphane and vitamin D in combination have a potential application in prostate cancer therapy, and act to modulate the JNK/MAPK signaling pathway.

Funder

São Paulo Research Foundation

Coordination for the Improvement of Higher Education Personnel

National Council for Scientific and Technological Development

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Immunomodulatory Effects of Sulforaphane in Exercise-Induced Inflammation and Oxidative Stress: A Prospective Nutraceutical;International Journal of Molecular Sciences;2024-02-01

2. Nutrigenetics and Cancer;İstanbul Sabahattin Zaim Üniversitesi Fen Bilimleri Enstitüsü Dergisi;2023-12-26

3. Isolinderalactone Induces Apoptosis, Autophagy, Cell Cycle Arrest and MAPK Activation through ROS–Mediated Signaling in Colorectal Cancer Cell Lines;International Journal of Molecular Sciences;2023-09-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3