Development and Application of a Real-Time Flood Forecasting System (RTFlood System) in a Tropical Urban Area: A Case Study of Ramkhamhaeng Polder, Bangkok, Thailand

Author:

Chitwatkulsiri DetchpholORCID,Miyamoto HitoshiORCID,Irvine Kim Neil,Pilailar Sitang,Loc Ho HuuORCID

Abstract

In urban areas of Thailand, and especially in Bangkok, recent flash floods have caused severe damage and prompted a renewed focus to manage their impacts. The development of a real-time warning system could provide timely information to initiate flood management protocols, thereby reducing impacts. Therefore, we developed an innovative real-time flood forecasting system (RTFlood system) and applied it to the Ramkhamhaeng polder in Bangkok, which is particularly vulnerable to flash floods. The RTFlood system consists of three modules. The first module prepared rainfall input data for subsequent use by a hydraulic model. This module used radar rainfall data measured by the Bangkok Metropolitan Administration and developed forecasts using the TITAN (Thunderstorm Identification, Tracking, Analysis, and Nowcasting) rainfall model. The second module provided a real-time task management system that controlled all processes in the RTFlood system, i.e., input data preparation, hydraulic simulation timing, and post-processing of the output data for presentation. The third module provided a model simulation applying the input data from the first and second modules to simulate flash floods. It used a dynamic, conceptual model (PCSWMM, Personal Computer version of the Stormwater Management Model) to represent the drainage systems of the target urban area and predict the inundation areas. The RTFlood system was applied to the Ramkhamhaeng polder to evaluate the system’s accuracy for 116 recent flash floods. The result showed that 61.2% of the flash floods were successfully predicted with accuracy high enough for appropriate pre-warning. Moreover, it indicated that the RTFlood system alerted inundation potential 20 min earlier than separate flood modeling using radar and local rain stations individually. The earlier alert made it possible to decide on explicit flood controls, including pump and canal gate operations.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3