Effects of Data Augmentation on the Nine-Axis IMU-Based Orientation Estimation Accuracy of a Recurrent Neural Network

Author:

Choi Ji Seok1,Lee Jung Keun1ORCID

Affiliation:

1. Inertial Motion Capture Lab, School of ICT, Robotics & Mechanical Engineering, Hankyong National University, Anseong 17579, Republic of Korea

Abstract

The nine-axis inertial and measurement unit (IMU)-based three-dimensional (3D) orientation estimation is a fundamental part of inertial motion capture. Recently, owing to the successful utilization of deep learning in various applications, orientation estimation neural networks (NNs) trained on large datasets, including nine-axis IMU signals and reference orientation data, have been developed. During the training process, the limited amount of training data is a critical issue in the development of powerful networks. Data augmentation, which increases the amount of training data, is a key approach for addressing the data shortage problem and thus for improving the estimation performance. However, to the best of our knowledge, no studies have been conducted to analyze the effects of data augmentation techniques on estimation performance in orientation estimation networks using IMU sensors. This paper selects three data augmentation techniques for IMU-based orientation estimation NNs, i.e., augmentation by virtual rotation, bias addition, and noise addition (which are hereafter referred to as rotation, bias, and noise, respectively). Then, this paper analyzes the effects of these augmentation techniques on estimation accuracy in recurrent neural networks, for a total of seven combinations (i.e., rotation only, bias only, noise only, rotation and bias, rotation and noise, and rotation and bias and noise). The evaluation results show that, among a total of seven augmentation cases, four cases including ‘rotation’ (i.e., rotation only, rotation and bias, rotation and noise, and rotation and bias and noise) occupy the top four. Therefore, it may be concluded that the augmentation effect of rotation is overwhelming compared to those of bias and noise. By applying rotation augmentation, the performance of the NN can be significantly improved. The analysis of the effect of the data augmentation techniques presented in this paper may provide insights for developing robust IMU-based orientation estimation networks.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3