Spectrum Evaluation in CR-Based Smart Healthcare Systems Using Optimizable Tree Machine Learning Approach

Author:

Raza Ahmad1,Ali Mohsin1ORCID,Ehsan Muhammad Khurram2ORCID,Sodhro Ali Hassan3ORCID

Affiliation:

1. Department of Computer Engineering, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan

2. Faculty of Engineering Sciences, Bahria University, Islamabad 44000, Pakistan

3. Department of Computer Science, Kristianstad University, SE-29188 Kristianstad, Sweden

Abstract

The rapid technological advancements in the current modern world bring the attention of researchers to fast and real-time healthcare and monitoring systems. Smart healthcare is one of the best choices for this purpose, in which different on-body and off-body sensors and devices monitor and share patient data with healthcare personnel and hospitals for quick and real-time decisions about patients’ health. Cognitive radio (CR) can be very useful for effective and smart healthcare systems to send and receive patient’s health data by exploiting the primary user’s (PU) spectrum. In this paper, tree-based algorithms (TBAs) of machine learning (ML) are investigated to evaluate spectrum sensing in CR-based smart healthcare systems. The required data sets for TBAs are created based on the probability of detection (Pd) and probability of false alarm (Pf). These data sets are used to train and test the system by using fine tree, coarse tree, ensemble boosted tree, medium tree, ensemble bagged tree, ensemble RUSBoosted tree, and optimizable tree. Training and testing accuracies of all TBAs are calculated for both simulated and theoretical data sets. The comparison of training and testing accuracies of all classifiers is presented for the different numbers of received signal samples. Results depict that optimizable tree gives the best accuracy results to evaluate the spectrum sensing with minimum classification error (MCE).

Funder

Kristianstad University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3