Towards an Optimized Blockchain-Based Secure Medical Prescription-Management System

Author:

Ahmed Imen1ORCID,Turki Mariem1ORCID,Baklouti Mouna1ORCID,Dammak Bouthaina2,Alshahrani Amnah2ORCID

Affiliation:

1. CES Lab, ENIS, University of Sfax, Sfax 3038, Tunisia

2. Department of Computer Science, Applied College, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

Abstract

This work introduces a blockchain-based secure medical prescription-management system seamlessly integrated with a dynamic Internet of Things (IoT) framework. Notably, this integration constitutes a pivotal challenge in the arena of resource-constrained IoT devices: energy consumption. The choice of a suitable blockchain consensus mechanism emerges as the linchpin in surmounting this hurdle. Thus, this paper conducts a comprehensive comparison of energy consumption between two distinct consensus mechanisms: Proof of Work (PoW) and Quorum-based Byzantine fault tolerance (QBFT). Furthermore, an assessment of the most energy-efficient algorithm is performed across multiple networks and various parameters. This approach ensures the acquisition of reliable and statistically significant data, enabling meaningful conclusions to be drawn about the system’s performance in real-world scenarios. The experimental results show that, compared to the PoW, the QBFT consensus mechanism reduced the energy consumption by an average of 5%. This finding underscores the significant advantage of QBFT in addressing the energy consumption challenges posed by resource-constrained IoT devices. In addition to its inherent benefits of privacy and block time efficiency, the Quorum blockchain emerges as a more sustainable choice for IoT applications due to its lower power consumption.

Funder

Deanship of Scientific Research, Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3