Evaluating Convolutional Neural Networks and Vision Transformers for Baby Cry Sound Analysis

Author:

Younis Samir A.1,Sobhy Dalia1,Tawfik Noha S.1

Affiliation:

1. Computer Engineering Department, Arab Academy of Science and Technology and Maritime Transport, Alexandria 1029, Egypt

Abstract

Crying is a newborn’s main way of communicating. Despite their apparent similarity, newborn cries are physically generated and have distinct characteristics. Experienced medical professionals, nurses, and parents are able to recognize these variations based on their prior interactions. Nonetheless, interpreting a baby’s cries can be challenging for carers, first-time parents, and inexperienced paediatricians. This paper uses advanced deep learning techniques to propose a novel approach for baby cry classification. This study aims to accurately classify different cry types associated with everyday infant needs, including hunger, discomfort, pain, tiredness, and the need for burping. The proposed model achieves an accuracy of 98.33%, surpassing the performance of existing studies in the field. IoT-enabled sensors are utilized to capture cry signals in real time, ensuring continuous and reliable monitoring of the infant’s acoustic environment. This integration of IoT technology with deep learning enhances the system’s responsiveness and accuracy. Our study highlights the significance of accurate cry classification in understanding and meeting the needs of infants and its potential impact on improving infant care practices. The methodology, including the dataset, preprocessing techniques, and architecture of the deep learning model, is described. The results demonstrate the performance of the proposed model, and the discussion analyzes the factors contributing to its high accuracy.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3