Combining Advanced Feature-Selection Methods to Uncover Atypical Energy-Consumption Patterns

Author:

Henriques Lucas12ORCID,Lima Felipe Prata3ORCID,Castro Cecilia1ORCID

Affiliation:

1. Centre of Mathematics, Universidade do Minho, 4710-057 Braga, Portugal

2. Mathematics Department, Federal Institute of Alagoas, Maceió 57020-600, AL, Brazil

3. IT Department, Federal Institute of Alagoas, Maceió 57020-600, AL, Brazil

Abstract

Understanding household energy-consumption patterns is essential for developing effective energy-conservation strategies. This study aims to identify ‘out-profiled’ consumers—households that exhibit atypical energy-usage behaviors—by applying four distinct feature-selection methodologies. Specifically, we utilized the chi-square independence test to assess feature independence, recursive feature elimination with multinomial logistic regression (RFE-MLR) to identify optimal feature subsets, random forest (RF) to determine feature importance, and a combined fuzzy rough feature selection with fuzzy rough nearest neighbors (FRFS-FRNN) for handling uncertainty and imprecision in data. These methods were applied to a dataset based on a survey of 383 households in Brazil, capturing various factors such as household size, income levels, geographical location, and appliance usage. Our analysis revealed that key features such as the number of people in the household, heating and air conditioning usage, and income levels significantly influence energy consumption. The novelty of our work lies in the comprehensive application of these advanced feature-selection techniques to identify atypical consumption patterns in a specific regional context. The results showed that households without heating and air conditioning equipment in medium- or high-consumption profiles, and those with lower- or medium-income levels in medium- or high-consumption profiles, were considered out-profiled. These findings provide actionable insights for energy providers and policymakers, enabling the design of targeted energy-conservation strategies. This study demonstrates the importance of tailored approaches in promoting sustainable energy consumption and highlights notable deviations in energy-use patterns, offering a foundation for future research and policy development.

Funder

Portuguese funds through the CMAT—Research Centre of Mathematics of University of Minho

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3