Vibration Energy Conversion Power Supply Based on the Piezoelectric Thin Film Planar Array

Author:

Wang Bo,Lan Dun,Zeng Fanyang,Li Wei

Abstract

Vibration energy harvesting has received much attention as a new type of power solution for low-power micro/nano-devices. However, VEH (vibration energy harvester) based on PVDF (polyvinylidene fluoride) piezoelectric materials have a low output power and energy conversation efficiency due to the relatively low piezoelectric constant, coupling coefficient, and dielectric constant. For this reason, we design a vibration energy conversion power supply, which consists of a VEH with a PVDF piezoelectric thin film planar array vibration structure and an energy harvesting circuit for regulating the electric energy of multiple sources. Furthermore, our solution was validated by simulations of structural dynamics in COMSOL and equivalent circuits model in Multisim. From the circuitry simulation results, the output current and the charging period increase and decrease, doubling, respectively, for each doubling of the number of array groups of films. Moreover, the solid mechanics simulation results show that the planar array structure makes the phase and amplitude of the input vibration waves as consistent as possible so that the same theoretical enhancement effect of the circuitry model is achieved. An identical experimental test was implemented with vibration conditions of 75 Hz-2.198 g. The fabricated harvester quickly charged the 22 V-0.022 F ultracapacitor bank to 5 V in 24 min. The maximum open circuit voltage and output power, respectively, were 10.4 V and 0.304 mW. This maximum charging power was 11.69 times higher than that of a single film. This special power supply can replace batteries to power low-power electronics deployed in vibrating environments, thus reducing the maintenance costs of equipment and environmental pollution rates.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3