Cognitive Routing in Software-Defined Underwater Acoustic Networks

Author:

Ghafoor HumaORCID,Koo InsooORCID

Abstract

There are two different types of primary users (natural acoustic and artificial acoustic), and there is a long propagation delay for acoustic links in underwater cognitive acoustic networks (UCANs). Thus, the selection of a stable route is one of the key design factors for improving overall network stability, thereby reducing end-to-end delay. Software-defined networking (SDN) is a novel approach that improves network intelligence. To this end, we propose a novel SDN-based routing protocol for UCANs in order to find a stable route between source and destination. A main controller is placed in a surface buoy that is responsible for the global view of the network, whereas local controllers are placed in different autonomous underwater vehicles (AUVs) that are responsible for a localized view of the network. The AUVs have fixed trajectories, and sensor nodes within transmission range of the AUVs serve as gateways to relay the gathered information to the controllers. This is an SDN-based underwater communications scheme whereby two nodes can only communicate when they have a consensus about a common idle channel. To evaluate our proposed scheme, we perform extensive simulations and improve network performance in terms of end-to-end delay, delivery ratio, and overhead.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FL-SDUAN: A Fuzzy Logic-Based Routing Scheme for Software-Defined Underwater Acoustic Networks;Applied Sciences;2023-01-10

2. SDN-QLTR: Q-Learning-Assisted Trust Routing Scheme for SDN-Based Underwater Acoustic Sensor Networks;IEEE Internet of Things Journal;2023

3. A Deep Learning Enabled Software-Defined Radio based Routing Protocol for Underwater Acoustic Sensor Networks;2022 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS);2022-04-07

4. Early Warning Obstacle Avoidance-Enabled Path Planning for Multi-AUV-Based Maritime Transportation Systems;IEEE Transactions on Intelligent Transportation Systems;2022

5. A Survey on Software Defined Architecture for Underwater Wireless Sensor Networks;2021 4th International Conference on Computing and Communications Technologies (ICCCT);2021-12-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3