Modelling the Vertical Distribution of Phytoplankton Biomass in the Mediterranean Sea from Satellite Data: A Neural Network Approach

Author:

Sammartino Michela,Marullo SalvatoreORCID,Santoleri Rosalia,Scardi Michele

Abstract

Knowledge of the vertical structure of the bio-chemical properties of the ocean is crucial for the estimation of primary production, phytoplankton distribution, and biological modelling. The vertical profiles of chlorophyll-a (Chla) are available via in situ measurements that are usually quite rare and not uniformly distributed in space and time. Therefore, obtaining estimates of the vertical profile of the Chla field from surface observations is a new challenge. In this study, we employed an Artificial Neural Network (ANN) to reconstruct the 3-Dimensional (3D) Chla field in the Mediterranean Sea from surface satellite estimates. This technique is able to reproduce the highly nonlinear nature of the relationship between different input variables. A large in situ dataset of temperature and Chla calibrated fluorescence profiles, covering almost all Mediterranean Sea seasonal conditions, was used for the training and test of the network. To separate sources of errors due to surface Chla and temperature satellite estimates, from errors due to the ANN itself, the method was first applied using in situ surface data and then using satellite data. In both cases, the validation against in situ observations shows comparable statistical results with respect to the training, highlighting the feasibility of applying an ANN to infer the vertical Chla field from surface in situ and satellite estimates. We also analyzed the usefulness of our approach to resolve the Chla prediction at small temporal scales (e.g., day) by comparing it with the most widely used Mediterranean climatology (MEDATLAS). The results demonstrated that, generally, our method is able to reproduce the most reliable profile of Chla from synoptical satellite observations, thus resolving finer spatial and temporal scales with respect to climatology, which can be crucial for several marine applications. We demonstrated that our 3D reconstructed Chla field could represent a valid alternative to overcome the absence or discontinuity of in situ sampling.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3