Attention-Mechanism-Containing Neural Networks for High-Resolution Remote Sensing Image Classification

Author:

Xu Rudong,Tao Yiting,Lu Zhongyuan,Zhong YanfeiORCID

Abstract

A deep neural network is suitable for remote sensing image pixel-wise classification because it effectively extracts features from the raw data. However, remote sensing images with higher spatial resolution exhibit smaller inter-class differences and greater intra-class differences; thus, feature extraction becomes more difficult. The attention mechanism, as a method that simulates the manner in which humans comprehend and perceive images, is useful for the quick and accurate acquisition of key features. In this study, we propose a novel neural network that incorporates two kinds of attention mechanisms in its mask and trunk branches; i.e., control gate (soft) and feedback attention mechanisms, respectively, based on the branches’ primary roles. Thus, a deep neural network can be equipped with an attention mechanism to perform pixel-wise classification for very high-resolution remote sensing (VHRRS) images. The control gate attention mechanism in the mask branch is utilized to build pixel-wise masks for feature maps, to assign different priorities to different locations on different channels for feature extraction recalibration, to apply stress to the effective features, and to weaken the influence of other profitless features. The feedback attention mechanism in the trunk branch allows for the retrieval of high-level semantic features. Hence, additional aids are provided for lower layers to re-weight the focus and to re-update higher-level feature extraction in a target-oriented manner. These two attention mechanisms are fused to form a neural network module. By stacking various modules with different-scale mask branches, the network utilizes different attention-aware features under different local spatial structures. The proposed method is tested on the VHRRS images from the BJ-02, GF-02, Geoeye, and Quickbird satellites, and the influence of the network structure and the rationality of the network design are discussed. Compared with other state-of-the-art methods, our proposed method achieves competitive accuracy, thereby proving its effectiveness.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3