Abstract
Massive machine-type communication (mMTC) is investigated as one of three typical scenes of the 5th-generation (5G) network. In this paper, we propose a 5G-enabled internet of things (IoT) in which some enhanced mobile broadband devices transmit video stream to a centralized controller and some mMTC devices exchange short packet data with adjacent devices via D2D communication to promote inter-device cooperation. Since massive MTC devices have data transmission requirements in 5G-enabled IoT with limited spectrum resources, the subcarrier allocation problem is investigated to maximize the connectivity of mMTC devices subject to the quality of service (QoS) requirement of enhanced Mobile Broadband (eMBB) devices and mMTC devices. To solve the formulated mixed-integer non-linear programming (MINLP) problem, which is NP-hard, an interference-aware subcarrier allocation algorithm for mMTC communication (IASA) is developed to maximize the number of active mMTC devices. Finally, the performance of the proposed algorithm is evaluated by simulation. Numerical results demonstrate that the proposed algorithm outperforms the three traditional benchmark methods, which significantly improves the utilization of the uplink spectrum. This indicates that the proposed IASA algorithm provides a better solution for IoT application.
Funder
National Natural Science Foundation of China
National Key Research and Development Program
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献