Edge AI Model Deployed for Real-Time Detection of Atrial Fibrillation Risk during Sinus Rhythm

Author:

Wu Hongmin1ORCID,Sawada Takumi2,Goto Takafumi1,Yoneyama Tatsuya1,Sasano Tetsuo3,Asada Ken45ORCID

Affiliation:

1. Technology & Innovation Department, Fukuda Denshi Co., Ltd., Tokyo 113-8420, Japan

2. Development Headquarters, Fukuda Denshi Co., Ltd., Tokyo 113-8420, Japan

3. Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan

4. Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan

5. Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo 104-0045, Japan

Abstract

Objectives: The study aimed to develop a deep learning-based edge AI model deployed on electrocardiograph (ECG) devices for the real-time detection of atrial fibrillation (AF) risk during sinus rhythm (SR) using standard 10 s, 12-lead electrocardiograms (ECGs). Methods: A novel approach was used to convert standard 12-lead ECGs into binary images for model input, and a lightweight convolutional neural network (CNN)-based model was trained using data collected by the Japan Agency for Medical and Research Development (AMED) between 2019 and 2022. Patients over 40 years old with digital, SR ECGs were retrospectively enrolled and divided into AF and non-AF groups. The data labeling was supervised by cardiologists. The dataset was randomly allocated into training, validation, and internal testing datasets. External testing was conducted on data collected from other hospitals. Results: The best-trained model achieved an AUC of 0.82 and 0.80, sensitivity of 79.5% and 72.3%, specificity of 77.8% and 77.7%, precision of 78.2% and 76.4%, and overall accuracy of 78.6% and 75.0% in the internal and external testing datasets, respectively. The deployed model and app package utilized 2.5 MB and 40 MB of the available ROM and RAM capacity on the edge ECG device, correspondingly. The processing time for AF risk detection was approximately 2 s. Conclusions: The model maintains comparable performance and improves its suitability for deployment on resource-constrained ECG devices, thereby expanding its potential impact to a wide range of healthcare settings. Its successful deployment enables real-time AF risk detection during SR, allowing for timely intervention to prevent AF-related serious consequences like stroke and premature death.

Funder

Japan Agency for Medical Research and Development

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3