A Nomogram for Predicting ADHD and ASD in Child and Adolescent Mental Health Services (CAMHS)

Author:

Blasco-Fontecilla Hilario12ORCID,Li Chao3ORCID,Vizcaino Miguel4,Fernández-Fernández Roberto5ORCID,Royuela Ana6ORCID,Bella-Fernández Marcos78ORCID

Affiliation:

1. Instituto de Investigación, Transferencia e Innovación, Ciencias de la Saludy Escuela de Doctorado, Universidad Internacional de La Rioja, 26006 Logroño, Spain

2. Center of Biomedical Network Research on Mental Health (CIBERSAM), Carlos III Institute of Health, 28029 Madrid, Spain

3. Faculty of Medicine, Universidad Autónoma de Madrid, 28049 Madrid, Spain

4. Centro de Salud San Carlos, 28200 El Escorial, Spain

5. Hospital Universitario Infanta Cristina, 28981 Madrid, Spain

6. Biostatistics Unit, Hospital Universitario Puerta de Hierro Majadahonda, 28222 Majadahonda, Spain

7. Puerta de Hierro University Hospital, 28222 Majadahonda, Spain

8. Faculty of Psychology, Universidad Autónoma de Madrid, 28049 Madrid, Spain

Abstract

Objectives: To enhance the early detection of Attention Deficit/Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD) by leveraging clinical variables collected at child and adolescent mental health services (CAMHS). Methods: This study included children diagnosed with ADHD and/or ASD (n = 857). Three logistic regression models were developed to predict the presence of ADHD, its subtypes, and ASD. The analysis began with univariate logistic regression, followed by a multicollinearity diagnostic. A backward logistic regression selection strategy was then employed to retain variables with p < 0.05. Ethical approval was obtained from the local ethics committee. The models’ internal validity was evaluated based on their calibration and discriminative abilities. Results: The study produced models that are well-calibrated and validated for predicting ADHD (incorporating variables such as physical activity, history of bone fractures, and admissions to pediatric/psychiatric services) and ASD (including disability, gender, special education needs, and Axis V diagnoses, among others). Conclusions: Clinical variables can play a significant role in enhancing the early identification of ADHD and ASD.

Publisher

MDPI AG

Reference51 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3