Coupled Wave Energy Converter and Nearshore Wave Propagation Models for Coastal Impact Assessments

Author:

Flanagan Timma,Wengrove Meagan,Robertson BrysonORCID

Abstract

Future nearshore wave energy converter (WEC) arrays will influence coastal wave and sediment dynamics, yet there are limited numerical methodologies to quantify their possible impacts. A novel coupled WEC-Wave numerical method was developed to quantify these possible influences on the nearshore coastal wave climate. The power performance of an Oscillating Surge Wave Energy Converter (OSWEC) array was simulated to quantify the wave energy dissipation due to the array. The OSWEC’s effect on the local wave climate was quantified by a novel coupling of two numerical models, WEC–Sim and XBeach. WEC–Sim characterizes the power extraction and wave energy transmission across the OSWEC, while XBeach captures the change in wave dynamics due to the WEC and propagates the waves to shore. This novel methodology provides the ability to directly quantify the impact of the effect of a WEC array on the local wave climate. Three case studies were analyzed to quantify the impact of a single WEC on breaking conditions and to quantify the impact of number of WECs and the array spacing on the local nearshore wave climate. Results indicate that when the WEC is placed 1100 m offshore, one WEC will cause a 1% reduction in wave height at the break point (Hsbp). As the WEC is placed further offshore, the change in Hsbp will become even smaller. Although the change in wave height from one WEC is small, WEC arrays magnify the cross–shore extent, area of influence and the magnitude of influence based on the spacing and number of WECs. For arrays with 10 or 15 WECs, the cross–shore extent was on average 200–300 m longer when the WECs were placed one to two WEC widths apart, compared with being spaced three or four widths apart. When the spacing was one WEC width apart (18 m), there was a 30% greater spatial impact on the nearshore region than arrays spaced three or four widths apart. The trend for the average transmission coefficient is within 5% for a 5, 10 or 15 WEC array, with a cumulative average of 78% transmission across all conditions.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference49 articles.

1. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change;Masson-Delmotte,2021

2. GLOBAL, REGIONAL, AND NATIONAL FOSSIL-FUEL CO2 EMISSIONS

3. Climate Change 2007: The Physical Science Basis;Gregory;Agenda,2007

4. Design of the Next Generation of the Oyster Wave Energy Converter;Cameron,2010

5. Pelamis Wave Power: EMEC: European Marine Energy Centre. Online Resourcehttps://www.emec.org.uk/about-us/wave-clients/pelamis-wave-power/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3