Thermal-Based Remote Sensing Solution for Identifying Coastal Zones with Potential Groundwater Discharge

Author:

Londoño-Londoño Julián E.ORCID,Condesso de Melo Maria TeresaORCID,Nascimento João N.ORCID,Silva Ana C. F.ORCID

Abstract

Submarine Groundwater Discharge (SGD) is an essential process of the hydrological cycle by hydraulically connecting the land and sea. However, the occurrence, importance and effects of SGD remain largely underexplored. Here, we developed and validated a straightforward tool for mapping potential SGD areas in coastal ecosystems of Portugal. Our approach was based on the premise that relatively cooler groundwater discharging to warmer coastal waters manifests in the thermal band of satellite imagery acquired during the summer months. We then used Landsat 8 thermal infrared imagery (TIR) to derive sea surface temperature and standardized temperature anomalies maps. The results confirmed the capacity of TIR remote sensing for identifying SGD areas. The thermal analysis enabled us to acquire a useful visual-spatial correlation between the location of thermal anomalies and potentiometric surfaces of coastal aquifers. This way, over 20 potential SGD areas were identified. Our study makes an important contribute to our current SGD research status by developing a cost-efficient tool which can be used as a first level approach for large areas. Further investigation is needed to quantify the SGD and its potential effect in the receiving ecosystems, especially those located within environmentally protected areas.

Funder

Erasmus Mundus scholarship for following the Joint Master Degree Programme on Groundwater and Global Change – Impacts and Adaptation

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference49 articles.

1. Dynamic response of surface water-groundwater exchange to currents, tides, and waves in a shallow estuary

2. Impact of Submarine Groundwater Discharge on Marine Water Quality and Reef Biota of Maui

3. Submarine groundwater discharge impacts on coastal nutrient biogeochemistry

4. Australian Groundwater-Dependent Ecosystems Toolbox Part 1: Assessment Framework;Richardson,2011

5. Groundwater and Biodiversity Conservation: A Methods Guide for Integrating Groundwater Needs of Ecosystems and Species into Conservation Plans in the Pacific Northwest;Brown,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3