Distribution Analysis of Local Ice Pressures in the Indentation Test at Various Velocities

Author:

Wang Guojun,Yue Qianjin,Zhang Dayong,Fu Yanghua,Peng Xin,Dong Rui

Abstract

When sea ice acts on vertical structures, there are much higher pressures in localized areas known as high-pressure zones (HPZs) than in other areas. The damage failure mode of sea ice varies with the sea ice velocity and affects the distribution of HPZs. In this study, an indentation test that drives ice sheet interaction with a vertical rigid plate (indentor) was designed, and a pressure sensor (consisting of 32 × 32 small pressure units of 100 mm2) was installed on the indentor face to measure the local ice pressure (LIP) at various velocities. The distribution of the LIPs along the ice thickness, the probability distribution of the LIPs and the distribution relationship of the LIPS in space and time were obtained from the measurement. The results show that the LIPs were mainly distributed in the middle of the sea ice, which is consistent with full-scale observations and previous research. Ductile failure of the sea ice results in a larger LIP distribution area than brittle failure at the same threshold kt (kt = σL/σcr). The probability distribution of the LIPs decreases exponentially with increasing pressure and follows a lognormal distribution. The maximum LIP appears at the peak moment of the global force when the sea ice failure mode is mainly ductile failure. However, the maximum LIP may not occur at the peak moment when the sea ice failure is mainly brittle failure and, instead can appear at any moment in the global force time history curve. The HPZ (which is larger than 7/8 times the maximum LIP) area is less than 2% of the nominal contact area at various velocities. The influence of the sea ice velocity on the spatial and temporal distribution of LIP is analyzed, and the results provide a reference for designing structures with local strength in ice regions.

Funder

National Natural Science Foundation of China

Innovation Team of Colleges and Universities 353 in Liaoning Province

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3