Use of 1D Unsteady HEC-RAS in a Coupled System for Compound Flood Modeling: North Carolina Case Study

Author:

Bush Samuel T.,Dresback Kendra M.,Szpilka Christine M.,Kolar Randall L.

Abstract

The research presented herein develops and compares an ADCIRC and ADCIRC/HEC-RAS (1D) paired model for the purpose of compound flood modeling within the Tar River and Pamlico Sound basins of North Carolina. Both the ADCIRC and 1D HEC-RAS models are capable of simulating river systems but differ in their underlying numerical formulations. A case-study comparison of each model’s ability to simulate flooding accurately and quickly in a riverine/estuarine system is investigated herein; results may serve as a valuable reference to forecasters and model developers. Individual models of the Tar River and Pamlico Sound area in North Carolina were used, and pairings of these models were devised to determine the benefits and drawbacks of using ADCIRC alone, or ADCIRC + 1D HEC-RAS, to simulate the response of the Tar River and Pamlico Sound during three test events: Hurricane Irene, Hurricane Floyd, and an unnamed April 2003 event. With increased emphasis on predicting total water levels, the results of this study can provide information for the possible development of similarly paired models for coastal river systems across the US and improve the body of knowledge about each model’s relative performance in riverine and estuarine areas.

Funder

National Oceanic and Atmospheric Administration

United States Department of Homeland Security

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3