Effect of Cu on Performance of Self-Dispersing Ni-Catalyst in Production of Carbon Nanofibers from Ethylene

Author:

Afonnikova Sofya D.1ORCID,Bauman Yury I.1ORCID,Stoyanovskii Vladimir O.1ORCID,Volochaev Mikhail N.2,Mishakov Ilya V.1ORCID,Vedyagin Aleksey A.1ORCID

Affiliation:

1. Boreskov Institute of Catalysis SB RAS, 5 Lavrentyev Ave., Novosibirsk 630090, Russia

2. Kirensky Institute of Physics, Akademgorodok, 50/38, Krasnoyarsk 660036, Russia

Abstract

The development of effective catalysts for the pyrolysis of light hydrocarbons with the production of carbon nanomaterials represents a relevant direction. In the present work, the influence of copper addition on performance of a self-dispersed Ni-catalyst and structural features of the obtained carbon nanofibers (CNFs) was studied. The precursors of Ni and Ni-Cu catalysts were prepared by activation of metal powders in a planetary mill. During contact with the C2H4/H2 reaction mixture, a rapid disintegration of the catalysts with the formation of active particles catalyzing the growth of CNFs has occurred. The kinetics of CNF accumulation during ethylene decomposition on Ni- and Ni-Cu catalysts was studied. The effect of temperature on catalytic performance was explored and it was shown that introduction of copper promotes 1.5–2-fold increase in CNFs yield in the range of 525–600 °C; the maximum CNFs yield (100 g/gcat and above, for 30-min reaction) is reached on Ni-Cu-catalyst at 575–600 °C. A comparative analysis of the morphology and structure of CNF was carried out using electron microscopy methods. The growth mechanism of carbon filaments in the shape of “railway crossties” on large nickel crystals (d > 250 nm) was proposed. It was found that the addition of copper leads to a decrease in the bulk density of the carbon product from 40–60 to 25–30 g/L (at T = 550–600 °C). According to the low-temperature nitrogen adsorption data, specific surface area (SSA) of CNF samples (at T < 600 °C) lies in the range of 110–140 m2/g, regardless of the catalyst composition; at T = 600 °C the introduction of copper contributed to an increase in the specific surface of CNF by 100 m2/g.

Funder

Russian Science Foundation

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3